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Using the adaptive time-dependent density matrix renormalization group method, we numerically study the
spin dynamics and transport in one-dimensional spin-1/2 systems at zero temperature. Instead of computing
transport coefficients from linear-response theory, we study the real-time evolution of the magnetization start-
ing from spatially inhomogeneous initial states. In particular, we are able to analyze systems far away from
equilibrium with this setup. By computing the time dependence of the variance of the magnetization, we can
distinguish diffusive from ballistic regimes, depending on model parameters. For the example of the aniso-
tropic spin-1/2 chain and at half filling, we find the expected ballistic behavior in the easy-plane phase, while
in the massive regime the dynamics of the magnetization is diffusive. Our approach allows us to tune the
deviation of the initial state from the ground state and the qualitative behavior of the dynamics turns out to be
valid even for highly perturbed initial states in the case of easy-plane exchange anisotropies. We further cover
two examples of nonintegrable models, the frustrated chain and the two-leg spin ladder, and we encounter
diffusive transport in all massive phases. In the former system, our results indicate ballistic behavior in the
critical phase. We propose that the study of the time dependence of the spatial variance of particle densities
could be instrumental in the characterization of the expansion of ultracold atoms in optical lattices as well.
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I. INTRODUCTION

Transport in low-dimensional strongly correlated systems
continues to excite theoretical and experimental physicists
alike. For theorists, transport problems pose a formidable
challenge, as established tools to work out ground-state prop-
erties of strongly correlated systems do not always provide
an adequate description of transport as well �see Refs. 1 and
2 and references therein�, which, in particular, pertains to
systems driven out of equilibrium.

Within linear-response theory, one often distinguishes be-
tween ballistic and diffusive transport by invoking the notion
of the Drude weight,3,4 i.e., the prefactor of a delta function
at zero frequency in the frequency-dependent transport coef-
ficient. A finite Drude weight defines ballistic transport;
while in the case of a vanishing Drude weight, the zero-
frequency limit of the conductivity’s regular part determines
the long-time behavior.

Significant theoretical attention has been devoted to one-
dimensional �1D� spin systems �see Refs. 1, 2, and 5 for a
review�. Open theoretical questions include, for instance, the
finite-temperature transport of the anisotropic spin-1/2 chain
with nearest-neighbor interactions �the XXZ chain�, with an
unsettled debate on whether finite-temperature transport in
the Heisenberg chain is ballistic or not6–13 as well as on the
actual temperature dependence of the Drude weight.8,12,14

For nonintegrable models and finite temperatures, one ex-
pects diffusive transport on general grounds,2,5,15,16 and nu-
merical studies have widely confirmed this picture in the
high-temperature limit and massive phases of spin

models.6,10,11,17–19 A similar scenario has emerged for thermal
transport.10,20–22 Yet, the issue of �quasi�ballistic transport in
gapless phases of, e.g., the frustrated chain,10,13,23,24 at low
temperatures is still under scrutiny. Moreover, the possibility
of anomalous transport due to a diverging coefficient of the
dc conductivity has been emphasized.22,23,25

Much less is known about the nonlinear transport at large
external driving forces or, more generally, nonequilibrium
properties. A recent study using a quantum-master-equation
approach has addressed the spin transport in the antiferro-
magnetic phase of the XXZ chain.26 The time evolution of
magnetization profiles in analytically exactly solvable mod-
els has been the case of interest in Refs. 27–30.

Besides the fundamental interest in understanding large-
bias and out-of-equilibrium phenomena, research into trans-
port properties of low-dimensional spin systems is strongly
motivated by exciting experimental results on large thermal
conductivities in spin ladder and chain materials �see, e.g.,
Refs. 31 and 32 for a review�. Most evidently in spin ladder
materials such as �La,Sr,Ca�14Cu24O41, such large thermal
conductivities have been attributed to magnetic
excitations.33,34 In a more recent experiment on
La5Ca9Cu24O41,

35 heat dynamics has been probed by time-
of-flight measurements. In this setup, the surface of a sample
is covered with a thin fluorescent layer. After shining on that
surface with a laser, one can then follow the propagation of
heat in the surface by thermal imaging at different times. A
pronounced difference is seen comparing a surface that con-
tains ladders to one that is perpendicular to the ladder direc-
tion. In the former case, heat diffuses predominantly along
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the ladder direction, while little dynamics is seen in the latter
case. These results support the notion of anisotropic heat
transport in this material34 due to the contribution of mag-
netic excitations.

Besides thermal transport measurements, questions of dif-
fusive versus ballistic transport have been experimentally
probed in nuclear magnetic resonance36,37 �see Ref. 38 for
related theoretical work� as well as muon spin-resonance
experiments.39 In a more recent development, transport prop-
erties of low-dimensional ultracold atom gases have gained
attention as well with experiments focusing on the detection
of Anderson localization.40,41 Interacting two-component
Bose gases in optical lattices have been suggested to poten-
tially realize spin-1/2 Hamiltonians.42,43

As far as numerical approaches are concerned, on the
technical side, full exact diagonalization �ED� studies are
restricted to system sizes of about 24 sites in the case of a
spin-1/2 chain; while in quantum Monte Carlo simulations,
the calculation of frequency-dependent properties of more
than two-point correlation functions remains difficult �see,
e.g., Ref. 44 and references therein�. The density matrix
renormalization group �DMRG� method45–47 has most suc-
cessfully been applied to zero-temperature phenomena. With
the advent of the adaptive time-dependent DMRG �tDMRG�
method,48–50 the study of nonequilibrium and large-bias phe-
nomena has become possible. While the methods mentioned
so far are designed for pure bulk systems, quantum-master
approaches that account for dissipation by incorporating
baths have been used as well in the study of transport in 1D
spin systems.51–55 Such methods are not constrained to the
linear response either and circumvent the use of Kubo for-
mulas, as they measure gradients and current expectation
values directly.

In this work we will introduce and exploit an alternative
approach based on zero-temperature tDMRG calculations.
Instead of analyzing currents and their correlation functions
directly, we study the magnetization dynamics after prepar-
ing the system in inhomogeneous initial states. For instance,
we subject the system to an external magnetic field of Gauss-
ian shape and, after releasing the confining field, follow the
time evolution of the magnetization. Computing the variance
of the magnetization allows us to distinguish ballistic from
diffusive regimes, depending on model parameters: we con-
sider the dynamics to be ballistic if the variance grows qua-
dratically in time, which is the behavior of noninteracting
particles, while a diffusive behavior manifests itself in a lin-
ear increase in the magnetization’s variance. Our approach
has the advantage that we can characterize diffusion by fol-
lowing the time evolution of a local quantity, the magnetiza-
tion, as compared to the technically more difficult evaluation
of the Kubo formula56 or the measurement of time-dependent
currents.57 Moreover, we can control the deviation of the
initial state from the ground state, thus scanning the regime
of systems substantially driven out of equilibrium.

While we show that our results for the spin-1/2 chain with
an exchange anisotropy in the regime of small perturbations
over the ground state are consistent with the picture estab-
lished by analyzing Drude weights at zero temperature,
namely, ballistic transport in the massless and diffusive
transport in the massive regime;58 we, in particular, argue

that this also applies to systems far from equilibrium. The
dynamics is further sensitive to the overall filling, or average
magnetization, as expected from linear-response theory re-
sults for the high-temperature limit.59–62

Beyond the anisotropic spin-1/2 chain with nearest-
neighbor interactions only, we further consider nonintegrable
systems such as the frustrated chain and the two-leg spin
ladder. As a result, we find that, in massive phases, the dy-
namics is typically diffusive; while in the massless one of the
frustrated chain, the zero-temperature dynamics are ballistic.

Transport in the XXZ chain has previously been studied in
Ref. 57 using tDMRG, thereby following the time evolution
from a highly excited initial state of the ���= �↑¯ ↑ ↓¯↓�
form. The long-time behavior of the magnetization was
found to be correlated with the phase transition from easy-
plane to easy-axis symmetry. Further, the expansion of par-
ticle density packets of nearly Gaussian form has been
looked at with tDMRG in the context of ultracold atomic
gases,63 modeled with the 1D Bose-Hubbard, as well as for
short pieces of interacting spinless fermions.64

The plan of the paper is the following. In Sec. II we define
the spin models studied and we describe our numerical
method, the tDMRG. We further motivate our definition of
diffusive transport by discussing the solution of the diffusion
equation in Sec. III. Section IV details the preparation of
initial states. In Sec. V, we study the magnetization dynamics
in the XXZ chain with ballistic transport in the massless re-
gime and diffusive transport in the massive regime. Section
VI summarizes our results for two nonintegrable 1D systems,
the frustrated chain, and the two-leg ladder. We conclude
with a discussion in Sec. VII.

II. MODEL AND METHOD

A. 1D spin-1/2 systems

Here we will first concern ourselves with the integrable
XXZ chain,

H = �
i=1

L−1 �1

2
�Si

+Si+1
− + H.c.� + �Si

zSi+1
z � , �1�

where Si
� and �=x ,y ,z are the components of a spin-1/2

operator acting on site i and Si
�=Si

x� iSi
y are the lowering

and raising operators, respectively. We denote the number of
sites by L and we introduce an exchange anisotropy �. Equa-
tion �1� can be re-expressed in terms of spinless fermions ci

�†�

through the Jordan-Wigner transformation,65

H = �
i=1

L−1 �1

2
�ci

†ci+1 + H.c.� + ��ni − 1/2��ni+1 − 1/2�� , �2�

with ni=ci
†ci. Setting �=0 results in a noninteracting system.

If not mentioned otherwise, we impose open boundary con-
ditions. We denote the filling factor with n. The local mag-
netization is given by Mi=Si

z and the total magnetization is
Sz=�iSi

z=L�n−1 /2�.
The ground-state phase diagram of the XXZ chain �see,

e.g., Ref. 66 and references therein� exhibits quantum critical
points at �= �1. A critical phase covers the ����1 region,
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while the ground state for ��1 exhibits antiferromagnetic
order. The region ��−1 has a ferromagnetic ground state,
yet we will restrict the discussion to ��0. The model is
integrable through the Bethe ansatz.67

In the second part of this work, we will focus on two
nonintegrable models with isotropic interactions �i.e., �=1�,
the frustrated chain and the two-leg ladder �for a review on
these models, see, e.g., Refs. 66 and 68�. Both models can be
understood as limiting cases of a single Hamiltonian that
incorporates a dimerization � and a frustration 	,

H = J �
i=1

�=x,y,z

L−1

�	1 + �− 1�i�
Si
�Si+1

� + 	Si
�Si+2

� � . �3�

The frustrated chain corresponds to �=0 and 	�0, while the
two-leg ladder is the �=1 and 	�0 limit. In the latter case,
we identify the coupling along legs as J� =	J and the cou-
pling along rungs as J�=J.

The frustrated chain features a quantum phase transition
at 	
0.241, separating a gapless phase from a massive
one.66 The spectrum of the two-leg ladder is gapped for any
J� /J� �0.68,69

B. Methods

For the time evolution of the noninteracting case 	�=0 in
Eq. �2�
, we use exact diagonalization which allows us to
treat large systems. For all interacting cases, we employ the
adaptive time-dependent DMRG method48–50 with a Krylov-
space-based time-evolution scheme70,71 in the space of ma-
trix product states.72 The control parameters are the dis-
carded weight �
 and the time step �t. Our simulations are
canonical ones as we work in subspaces with a fixed total Sz

or particle number, respectively. We have performed an ex-
tended error analysis by �i� comparing ED and tDMRG re-
sults in the noninteracting case and �ii� by performing several
runs with different time steps and discarded weights at rep-
resentative parameters in the interacting case. Specifically, in
case �i�, we have analyzed the relative errors in the local
magnetization

�M =
1

L
�
i=1

L

�Mi
DMRG − Mi

ED�

and its variance �see below�. It turns out that, typically, a
time step of �t=0.125 /J and a discarded weight of �

=10−6 keeps the relative error �M in M below 10−4 for a
chain of L=200 sites at half filling and for times t�100 /J.

III. BALLISTIC VERSUS DIFFUSIVE TRANSPORT

Within linear-response theory, one often separates the dy-
namical conductivity ���� into a delta function ���� at zero
frequency and a regular part at frequencies ��0,59,65

���� = 2
D���� + �regular��� . �4�

These quantities derive from the Kubo formula that is based
on evaluating current-current correlation functions.65 We re-
peat that a finite Drude weight in a clean one-dimensional

system at zero temperature defines an ideal conductor and
thus ballistic behavior; while, if D=0, one has an
insulator.3,73 The dependence of the Drude weight on the
exchange anisotropy � in the case of the integrable XXZ
chain and at zero temperature is well known,58

D =



4

sin �

��
 − ��
, �5�

where, in this equation, the anisotropy is parametrized
through �=cos���. We thus have D�0 for ����1, featuring
a discontinuous drop to zero at �=1. Due to the excitation
gap in the massive regime ��1, we have a true insulator
with �dc=0 that can only transport magnetization once the
gap has been exceeded by a sufficiently large external per-
turbation.

Similarly, the Drude weight vanishes in the massive
phases of both the spin ladder and the frustrated chain, while
in the massless regime of the latter model D is finite at T
=0.74,75

Strictly speaking, on all systems with open boundary con-
ditions, the Drude weight vanishes identically. Yet, it turns
out that the corresponding weight is just shifted to small but
finite frequencies,56,76 and thus the system is expected to still
exhibit ballistic and anomalous transport properties.

To justify and motivate our way of analyzing ballistic and
diffusive transports, let us, for pedagogical reasons, consider
a 1D system that obeys the diffusion equation

�t
�x,t� = � · 	D � 
�x,t�
 . �6�

Here 
�x , t� denotes, e.g., a particle density and D is the
diffusion constant. The Green’s function associated with this
equation is, in a d-dimensional setup, given by

G�x, x́,t� =
1

�4
Dt�d/2e−�x − x́�2/4Dt. �7�

Therefore, we can calculate the expectation values as

�x��t� = x́, �x2� = �x́�2 + 2dDt �8�

and see that the variance �x
2= �x2�− x́2 is linear in t for normal

diffusive transport. On the contrary, for ballistic dynamics,
one expects the variance �x

2 to grow quadratically in time, as
is well known from elementary quantum mechanics for free
particles.

Given a distribution of Mi�t�= �ni�t��−1 /2 at a time t, we
find it most straightforward to compute the variance from the
corresponding particle density distribution �ni�t��=Mi�t�
+1 /2 as this is a positive quantity. We then compute the
variance from

�M
2 �t� =

1

�L/2��i=1

L

�i − �n�2�ni�t�� , �9�

where �n is the first moment of the normalized distribution
�ni�. Note that we normalize �ni� on the actual number of
fermions rather than the system size.
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IV. PREPARATION OF INITIAL STATES

We consider three different ways of preparing the initial
state, which we now illustrate for the case of the XXZ chain,
Eq. �1�, and at half filling n=0.5, i.e., at Sz=0. With the
exception of Sec.V B 2, our simulations are always per-
formed in subspaces with these quantum numbers.

Technically, we add a term

HB = − �
i

BiSi
z �10�

to the Hamiltonian. By choosing Bi appropriately, this real-
izes �i� a Gaussian magnetic field and �ii� a box-shape mag-
netic field, both applied during a ground-state DMRG run
and turned off at time t=0,

Bi�t = 0� = B0 exp	− �i − i0�2/2�B
2
 , �11�

Bi�t = 0� = B0��i −
L − sB

2
���i +

L + sB

2
� , �12�

where ��i� is the Heaviside function. In Eq. �11�, �B
2 is the

variance of the external Gaussian field, B0 its amplitude, and
we set i0=L /2+0.5; while in Eq. �12�, sB denotes the width
of a box in which a constant field B0 is applied.

The third initial state �iii� is realized by finding the ground
state of a system at filling n= �L /2−1� /L and then applying a
single spin flip Si

+ on a site i. The time evolution is then
performed at half filling, as in cases �i� and �ii�.

The typical shape of the induced density �ni�t=0�� or,
equivalently, the magnetization profile is illustrated in Figs.
1�a�–1�c� at �=0 �all panels� and �=0.5 	panel �a� only
 for
the three initial states �i�–�iii�, respectively. Inherent to the
fermionic nature of model �2�, we first observe Friedel oscil-
lations with a 2kF period, where kF=
 /2 is the Fermi mo-
mentum at half filling. Second, there are slower spatial os-
cillations that are more evident in the case of �=0.5 	Fig.
1�b�
. These oscillations’ characteristic wavelength depends,
as we have checked, on �B as well as on the system size. As
we shall see later, for the purpose of qualitatively analyzing
the time dependence of the variance, the presence of the
long-ranged oscillations is irrelevant, as the dynamics stems
from the central peak dispersing, while away from the center,
the oscillations contribute subdominantly to the time depen-

dence after turning off HB. We will nevertheless sometimes
find it illustrating and useful to work with a density

�ñx�t�� = 	�n2i−1�t�� + �n2i�t��
/2 �13�

averaged over adjacent sites with i=1, . . . ,L /2 and x=2i
−1 /2. To recover the variance of the nonaveraged density,
we multiply �̃M

2 by a factor of 2. The averaged density
�ñi�t=0�� is plotted with dashed lines in Fig. 1�a� for �=0
and 0.5, and we see that this averaging results in quite
smooth curves.

For �ñi�t=0�� and a Gaussian external Bi, we can now
further address the question whether the induced density pro-
file follows a Gaussian as well. We find that this is the case at
small �, in good approximation. In the massive phase �
�1, deviations of �ñi�t=0�� from a Gaussian profile are sub-
stantial. We will nevertheless refer to initial states prepared
with Eq. �11� as Gaussian initial states throughout.

As we go from �=0 into the massive regime ��1, a gap
opens and, qualitatively, despite the field Bi being inhomo-
geneous, we expect the existence of the gap to affect the
average deviation from half filling at a given set of �B0 ,�B�.
To illustrate this point, we display this average deviation �ñ
defined as

�ñ = ��
i

��ñi� − 1/2�2/N �14�

in Fig. 2 ��=0,0.5,1 ,1.6�. For �=1.6, we observe a steep
increase in �ñ at B0 /J
0.4, and we will use B0 /J�0.45 for
the time evolution, as below this value, little dynamics in the
time evolution is seen. Note that Fig. 2 has a logarithmic
scale on the �ñ axis, and below B0 /J
0.4, �ñ�exp�c /B0� in
the case of �=1.6. We find c=0.4J and this roughly coin-
cides with twice the spin gap for this value of �.77

V. XXZ CHAIN

After detailing the way of preparing initial states, we now
come to the analysis of Mi�t�= �ni�t��−1 /2, focusing on the
variance �M

2 �t�. In this section, we will first discuss �M
2 �t� in

the massless regime in Sec. V A and show that we clearly
see ballistic behavior with �M

2 �t�=const+D2t2, independently
of the initial state. We will then analyze the dependence of
the coefficient D2 on B0, scanning the full range of perturba-
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FIG. 1. �Color online� Density profiles �ni�t=0��=Mi�t�+1 /2 in the initial state �time t=0�, induced by �a� a Gaussian magnetic field �11�
�B0=J ,�B=5�; �b� a box-shaped magnetic field �12� �B0=J ,sB=5�; and �c� application of SL/2+1

+ , all at half filling n=0.5. Thin solid lines in
�a�–�c�: �=0; thick solid lines in �a�: �=0.5; and thin and thick dashed lines in �a�: averaged density �ñi�t=0�� for �=0 and 0.5, respectively
	see the text in Sec. IV for details on the averaging and Eq. �13�
. Results at �=0 are obtained with ED, all others with DMRG.
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tions from a linear one with D2�B0 to the largest perturba-
tions possible. These regimes are distinct by a different
finite-size scaling behavior to be discussed below. As we
illustrate in the case of a Gaussian magnetic field �11�, bal-
listic dynamics is found for ��1. This holds independently
of the actual choice of �B0 ,�B� and thus also far from equi-
librium, except for the most extreme initial states considered
here �see the discussion in Sec. V A 2 below�.

We then, in Sec. V B, discuss the transition from ballistic
to diffusive behavior which is expected to occur at �=1. Our
data are consistent with this picture as we find strong evi-
dence for diffusive transport for ��1.5. We will present
results for several B0 at �=1.5 to substantiate that the obser-
vation of diffusive transport is independent of the initial
state.

A. XXZ chain: Massless regime

1. Time dependence of the variance

We now turn to the analysis of Mi�t�= �ni�t��−1 /2 in the
massless regime. Figures 3�a� and 3�b� show �ni�t��=Mi�t�
+1 /2 for �=0 and �=0.5, respectively. The initial density
profile first melts and then, at times tJ
5, splits into two
packets that travel into opposite directions.63 Figure 4 shows
snapshots of �ni�t�� at times tJ=0,15,25 for �=0.5. It is
noteworthy that, while substantial oscillations are present far
away from the central peak, these oscillations are frozen in
and do not contribute to the increase in �M

2 since, far away
from the center of the chain, H
H+HB.

The variance �M
2 �t�−�M

2 �t=0�, plotted vs time, is dis-
played in Fig. 5�a� for �=0 �solid line�, �=0.5 �dashed line�,
and �=1 �dotted line� for the evolution from an initial state
of the type �i�, enforced by a Gaussian magnetic field with
B0=J /2 and �B=5. The circles represent the time evolution
of �̃M

2 �t�− �̃M
2 �t=0� computed from the averaged density

�ñ�t�� �see Sec. IV� for �=0,0.5,1. For �=0 and 0.5, the
averaged results very well coincide with �M

2 �t�. For the pur-
pose of characterizing ballistic or diffusive behavior, it there-
fore does not matter whether the pure fermionic density
�ni�t�� or the averaged quantity �ñi�t�� is used. In what fol-
lows, we will present results extracted from the former, un-
less stated otherwise. We mention, although, that the quanti-

tative difference in the variance extracted from the averaged
as compared to the bare density becomes more pronounced
the larger the � and the smaller the B0 is. This becomes
evident in the case of �=1, included in Fig. 5�a�.

The key observation from Figs. 5�a� and 5�b� is the qua-
dratic increase in the variance with time observed for �=0,
0.5, and 1, which confirms the expected ballistic behavior in
the critical regime. For the isotropic chain ��=1�, we find
that the best fit of a power law to �M

2 �t�−�M
2 �t=0� yields

�M
2 �t�−�M

2 �t=0�� t1.98, which is thus slightly below the be-
havior expected for ballistic transport. However, a deviation
of just 1% from the expected exponent of 2 is very much
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FIG. 2. �Color online� Average deviation �ñ from half filling
	see Eq. �14�
 in the initial state prepared by applying a Gaussian
magnetic field 	Eq. �11�
 with �B=5 as a function of B0 for �=0,
0.5, 1, and 1.6.
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=200 sites�.
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within the accuracy of our numerical calculations.
Moreover, this behavior, as we show in Fig. 5�b� for the

example of �=0.5, is independent of the shape of the initial
state: all three types of states studied here—Gaussian field,
box shape, and application of Si

+—result in ballistic dynam-
ics at half filling.

2. From small to large perturbations

So far, we have worked at a fixed pair of B0 and �B. We
will now explore the dependence of the dynamics on how far
the initial state is perturbed away from the actual ground
state. This deviation is measured through the average devia-
tion �ñ from half filling �compare Fig. 2�. For that purpose,
we fix �B=5 and perform a set of simulations at different
B0’s at �=0, 0.5, and 1. Independently of B0, we always find
a quadratic increase in �M

2 �t� with time, i.e., �M
2 �t�=const

+D2�B0�t2. As a main result, we therefore conclude that the
qualitative behavior of the dynamics is independent of the
external perturbation; it is always ballistic in the massless
regime.

On a more quantitative level, it is instructive to plot D2 vs
B0, shown in Fig. 5�c� for �=0 and 0.5, as it allows us to
distinguish two regimes: first, the linear regime, in which D2
is linear in B0 with D2 L /2� f�L� at a fixed B0. For �=0
and 0.5, the linear regime extends up to B0 /J
0.5. Second,
at larger B0, effects of both the band curvature and the finite
bandwidth start to play a role with significant finite-size ef-
fects as illustrated in Fig. 6 for B0=2J. In the case of �=0
and B0=2J, we are able to access system sizes of L
105

and, at large L, the scaling is of the form D2 L /2�1 /L,
allowing for an extrapolation to L→�. In the interacting
case, the accessible system sizes are too small to establish
such scaling and we thus have not attempted any extrapola-
tion in the case of �=0.5.

Let us next discuss the limiting cases of first, the linear
regime, i.e., D2�B0, and, second, the limit of B0→�. Start-
ing with the former, the linear regime, D2 L /2=�B0, we find
that the prefactor is �
4J for values of ��0.5. At large �,
this reduces to �
3.4J as the results for �=1 displayed in
Fig. 5�c� show �circles�. The interpretation of D2 as being

linear in B0 for ��1 is based on the observation that the
area Apeak�B0� under the initial Gaussian-like magnetization
profile increases linearly in B0, which we can strictly confirm
in the �=0 case and chains with up to L=1000 sites. This
analysis requires an estimate of the background density,
which can be best done in the �=0 case but suffers from
finite-size effects at a nonzero �. In the �=0 case, we find
that �B0 /Apeak�B0�=4J2 and, for �=0.5, �B0 /Apeak�B0�

1.7J2. We may therefore conclude that, in the linear re-
gime, �B0=Apeak�B0�vg

2���, where vg��� is the group veloc-
ity �see, e.g., Ref. 78�

vg��� =



2

sin���
�

�15�

with �=cos���. From our numerical data for L=200 sites
and at ��0.5, we obtain D2L / �2Apeak��vg

2��� due to finite-
size effects; but qualitatively, D2L / �2Apeak� increases with �
at a fixed B0 in the linear regime as expected from Eq. �15�
for the behavior of the velocity vg

2. At sufficiently large B0,
we expect the band curvature to play a role as well which we
are able to verify in the case of �=0. D2L / �2Apeak� then
decreases below vg

2��=0� as B0 increases.
As for the limit of large B0�J, we note that since

Mi�1 /2 and since we work at fixed half filling of the full
system, the most extreme initial state that, on a fixed system
size L, B0→� drives the system into is a Fock state �f� with
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�ni�t=0��=1 for L /4� i�3L /4 and zero otherwise. We thus
follow the evolution from such a state as well as the evolu-
tion from states with very large B0�10iJ �i=1, . . . ,30�. The
inset in Fig. 5�c� shows that, as B0 increases, D2�B0� indeed
approaches the value found for the limiting state �f� for
B0�1022J in the example of �=0. In that limit, D2=1 /2J2.

While for the parameters of the main panel of Fig. 5�c�,
i.e., �=0,0.5,1 and B0 /J�2.4, the variance always follows
a power law with exponent 2, curiously, this is not the case
for the aforementioned Fock states encountered in the B0
→� limit and �=0.5,1. There, we find exponents that are
consistently below 2 for ��0 and L=40,80,200. This be-
havior was also observed in Ref. 57 for the evolution from
similar Fock states. A full analysis of the evolution from
Fock states will be presented elsewhere.

We mention that the time-dependent evolution from Fock
states or, more generally, the evolution of particles originally
trapped in a confined region into an empty lattice has been
intensely studied with numerical methods in Refs. 79–82, for
the cases of hard-core bosons,79,80 soft-core bosons,81 and the
interacting two-component Fermi gas.82 These studies have a
fundamental interest in out-of-equilibrium phenomena, with
a perspective onto experiments with ultracold atoms in opti-
cal lattices. Among these we mention the experimental ef-
forts directed at detecting Anderson localization in cold atom
gases, precisely by utilizing such expansion setups.40,41

Finally, while all results discussed here were obtained
from chains with L=200, we stress that we have carefully
studied the finite-size scaling of D2 �see Figs. 5�c� and 6�. By
plotting D2L /2 in Fig. 5�c�, we account for a trivial size
dependence and curves obtained from different L but the
same � indeed collapse onto a single one in the linear re-
gime. At larger B0, D2 tends to decrease with system size L
as less particles per B0 can be accumulated in the initial
Gaussian peak due to Si

z�1 /2 �see Fig. 6�.

B. XXZ chain: Massive phase

1. Transition from ballistic to diffusive behavior

Linear-response theory predicts a sharp transition from
ballistic spin transport, characterized by a finite Drude
weight D, to diffusive spin transport at �=1.58 We have car-
ried out several simulations with different �=1,1.2,1.3,

1.4,1.5 at fixed parameters B0=2J and �B=5 to check
whether an analysis of the variance captures this transition.
As the data for �M

2 �t� displayed in Fig. 7�a� show, we clearly
find a linear increase in �M

2 �t� at large times in the case of
�=1.5, which, in the sense of Sec. III, we interpret as evi-
dence for diffusive transport. At smaller 1���1.4, our data
do not allow for this conclusion, yet at least we can state that
the data for �=1.3 and 1.4 do not follow a power law, in-
dicative of nonballistic transport. Also note that there is no
contradiction with Eq. �5� as it is well known that finite-size
effects in the vicinity of �=1 are severe and come along
with a logarithmically slow convergence with system size of
quantities such as the Drude weight or the spin stiffness.10,83

We suspect that larger system sizes, hence access to longer
simulation times, are necessary to fully capture the sharp
transition from ballistic to diffusive behavior at �=1. We
stress that with B0=2J, we work with highly perturbed initial
states, and thus the observation of diffusive transport for �
�1.5 is a nontrivial one, going beyond the case studied in
Ref. 59. Our results for ��1.5 thus establish an example of
diffusive dynamics with �M

2 �t�=const+D1t in this model for
the out-of-equilibrium situation. Note that a recent tDMRG
work on transport in spin chains incorporating baths has re-
ported similar results, derived from current and spin profiles
in the steady state.55

It is noteworthy that, at short times, obviously, the dynam-
ics is always ballistic, independently of �, as can be seen in
Fig. 7�a�. Even the value of �M

2 �t� is roughly the same for all
� at short times. In the long-time limit, which is the relevant
one to characterize the system as diffusive or ballistic, we
find that �M

2 �t� systematically decreases with increasing �.
The reason is that, in the � /J→� limit, no dynamics is
possible at all.

We have further studied the dependence on B0 at �=1.5.
In Sec. IV we hinted at the fact that, at ��1, a reasonably
large B0 is necessary to observe a significant change in the
magnetization profile over the time scales simulated. We at-
tribute this to the existence of a spin gap in the antiferromag-
netic phase ��1 and focus on B0�J. Our results of several
runs at �=1.5, scanning the B0 dependence, are displayed in
Fig. 7�b�. We find that the variance increases with B0, which
we mainly attribute to more particles accumulated in the cen-
tral peak. Furthermore, the figure suggests that the time scale
at which diffusive behavior sets in depends on B0 such that,
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for larger B0, we are able to observe a linear increase in
�M

2 �t� earlier in time.

2. Restoring ballistic transport

While so far we have restricted ourselves to the case of
half filling, we now address the magnetization dynamics at
incommensurate filling. The initial states are now created by
applying the external fields in subspaces that already have a
finite magnetization., i.e., Sz�0. Results for the variance at
�=1.5 are displayed in Fig. 7�c�. The z component of the
total spin is Sz=0,5 ,10,15,20. We find that any nonzero Sz

is sufficient to render the dynamics ballistic again, on the
time scales accessible to our simulations. According to our
data, the variance follows �M

2 �t�−�M
2 �t=0�� t	 with 	


2.05�0.02. This observation is in agreement with the
infinite-temperature behavior of the Drude weight,59,60 which
in the XXZ chain is finite at any � away from half filling.
Note that ��1 and Sz�0 but below saturation is in the
easy-plane phase of the XXZ chain with gapless
excitations.66 Note that the prefactor in �M

2 �t�−�M
2 �t=0�

=D2�Sz�t	 depends on Sz in a nonmonotonous way: it is the
largest at around Sz=10 and then decreases as saturation is
reached.

VI. NONINTEGRABLE MODELS

We finally move on to the discussion of the dynamics in
two nonintegrable models, the two-leg ladder and the frus-
trated chain, both limiting cases of Eq. �3�. Numerical stud-
ies of the high-temperature limit, based on the Kubo for-
mula, conclude that spin and thermal transport in the massive
phases of these models �see Sec. II� are normal with a
vanishing Drude weight.2,10,21,22 The conclusions on the
massless phase of the frustrated chain are not
unambiguous,2,10,23,24 and it has been pointed out that the
energy-current operator, to first order in the next-nearest-
neighbor interaction 	J, is conserved.23

One scenario is that the high-temperature Drude weight
vanishes,10,21 while it is still possible to find anomalous
transport properties in the low-temperature regime, e.g., in
the form of a peculiar low-frequency behavior of �regular���.
Exact diagonalization results show that the Drude weight is

finite at zero temperature in the massless phase of the frus-
trated chain.74,75

We here use the approach outlined in the previous sec-
tions to show that the zero-temperature dynamics of two-leg
ladders and frustrated chains with a spin gap is of diffusive
nature. To this end, we prepare initial states with Gaussian
magnetic fields �11�. We emphasize that, in the case of the
spin ladder, both sites on a rung experience the same field. In
these two cases and similar to the discussion of initial states
for ��1 in the XXZ chain �compare Fig. 2 in Sec. IV�, the
amplitude of the Gaussian field, B0, needs to be large enough
to induce a substantial perturbation in the magnetization Mi
that will actually propagate through the system. We thus here
probe the magnetization dynamics and transport at large ex-
ternal perturbations.

Starting with the example of a spin ladder with J�=J�, we
display the magnetization profile Mi�t�= �ni�t��−1 /2 in Fig. 8
as a contour plot. The time dependence of the corresponding
variance is shown in Fig. 9�a� 	solid line, squares
, and we
find a linear increase in �M

2 �t� for times t�17 /J, clearly
establishing the notion of diffusive dynamics in the ladder
system.

A more involved picture emerges in the case of the frus-
trated chain. For this model we present results for 	=0.2
�circles� and 	=0.4 �stars� in Fig. 9�b�. While on the time
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scales simulated, the variance for the 	=0.2 curve perfectly
follows the form �M

2 �t�=const+D2t2 �a least-square fit to this
function is displayed by a thin solid line�, in the case of 	
=0.4, we observe that the data do not follow a power law
�M

2 �t�=const+D	t	, which supports the notion of a time-
dependent crossover from ballistic to diffusive dynamics. In
fact, the numerical results yield a variance that clearly in-
creases linearly in time for t�30 /J. Note that the transition
from the massless to the massive phase in this model is of
the Beresinski-Kosterlitz-Thouless type84–86 with an expo-
nentially growing correlations lengths as the critical point
	crit is approached from 	�	crit. This renders it very diffi-
cult to see a sharp transition in the transport behavior using
exact diagonalization or DMRG as 	crit is crossed.

We mention, although, that for other values of 	�	crit

0.241 �results not shown here�, on similar time scales, no
diffusive behavior is seen. Moreover, the time scale at which
diffusive dynamics emerges seems to strongly depend on B0,
i.e., on how far the initial state is perturbed over the actual
ground state. The qualitative trend is that the larger the B0,
the faster the diffusive transport is established. Unfortu-
nately, the larger the B0, the worse is the entanglement
growth which renders tDMRG simulations more difficult
�see, e.g., Ref. 87�.

Keeping in mind these remarks, we are in a position to
conjecture that, in general, in massive phases of one-
dimensional spin models, spin transport is diffusive. Com-
bined with the existing results for the high-temperature
limit,2,10,22 our work suggests that this observation applies
independently of temperature.

Note that a recent exact diagonalization study88 has pro-
moted a different behavior, namely, evidence for ballistic
spin transport at zero temperature in the frustrated spin chain
at 	=1. This conclusion is based on the presence of certain
oscillations �dubbed a bouncing behavior�52,88 in Mi�t� in the
evolution from an initial state with all spins pointing up
�down� in the left �right� part of an open system �compare
Refs. 27 and 57�. We believe that our analysis of the variance
is more quantitative, which may imply that the oscillations in
Mi�t� reported on in Ref. 88 are possibly of a different origin.
A recent study of quantum quenches in the XXZ chain pro-
poses that oscillations seen in the order parameter are related
to the quantum phase transition at �=1 �Ref. 89, see also
Ref. 43�.

VII. SUMMARY AND DISCUSSION

In this work we studied the nonequilibrium magnetization
dynamics in one-dimensional spin models at zero tempera-
ture using the adaptive time-dependent DMRG method on
system sizes as large as L=200 sites. We considered several
models: the integrable spin-1/2 XXZ chain, the frustrated
chain, and the two-leg spin ladder. Based on the analysis of
the time dependence of the spatial variance of the magneti-
zation during the time evolution starting from initial states
with an inhomogeneous magnetization profile, we conclude
that, in the critical regime of the XXZ chain, the magnetiza-

tion dynamics is ballistic. In contrast to that, in the massive
regime, our results indicate diffusive transport at half filling
while ballistic transport is restored away from half filling. A
major aspect of our work is that we scanned the entire re-
gime going from small to very strong perturbations over the
ground state. This substantially extends previous studies of
linear-response functions as we clearly enter into a regime
with the system driven out of equilibrium. In the case of the
massless regime of the XXZ chain, ballistic transport is seen
for substantially perturbed initial state; while for the most
extreme initial states, i.e., pure Fock states, we still find a
power law for the time dependence of the variance but, on
the times scales simulated, with an exponent below 2.57

As for the nonintegrable models, the frustrated chain and
the ladder, the numerical data clearly support the notion of
diffusive dynamics in the ladder system. In the case of the
frustrated chain, our data are consistent with a transition
from ballistic to diffusive behavior as the quantum critical
point 	crit
0.241 is crossed. In the limit of small perturba-
tions, this result confirms with the general picture that mass-
less phases support ballistic and massive ones diffusive dy-
namics, at zero temperature and irrespective of integrability.4

Overall, a difference between the low- and high-temperature
behaviors is then evident: numerical results for the high-
temperature limit2 consistently support the notion of vanish-
ing Drude weights in nonintegrable models, and thus normal
transport behavior, irrespective of what the ground-state
phases are. Conversely, exact diagonalization studies find a
finite Drude weight in the gapless phase of the frustrated
spin-1/2 chain at zero temperature.74,75,90 In the low, or more
extremely, zero-temperature case, effective low-energy theo-
ries are expected to give a valid description, which typically
predict diverging transport coefficients of clean spin systems
�see, e.g., Ref. 91�. As for the heat transport measurements
on spin chain and ladders experiments �see Refs. 31 and 32
for a survey�, a dominant magnetic contribution is usually
evident in the high-temperature regime, where the validity of
effective low-energy theories for the description of transport
is not obvious.

Finally, the approach of distinguishing ballistic from dif-
fusive transport by analyzing the spatial variance of a densi-
tylike quantity could be instrumental in characterizing ultra-
cold atomic gases in optical lattices as well. There, one
typically realizes the expansion of particles into an empty
lattice, and experimentally it is possible to measure the ex-
panding cloud’s radius. It would thus be very interesting to
identify conditions for ballistic as compared to diffusive dy-
namics for model systems typically encountered in ultracold
atomic gases such as the Bose-Hubbard model or a two-
component Fermi gas in an optical lattice.
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